Wilkinson's catalyst | |
---|---|
(SP-4)chloridotris(triphenylphosphane) |
|
Other names
Rhodium(I) tris- |
|
Identifiers | |
CAS number | 14694-95-2 |
EC number | 238-744-5 |
RTECS number | none |
Properties | |
Molecular formula | C54H45ClP3Rh |
Molar mass | 925.22 g/mol |
Appearance | red solid |
Melting point |
245-250 °C |
Solubility in water | insoluble in water |
Solubility in other solvents | benzene |
Structure | |
Coordination geometry |
square planar |
Hazards | |
R-phrases | none |
S-phrases | S22 S24/25 |
Main hazards | none |
Related compounds | |
Related compounds | triphenylphosphine Pd(PPh3)4 IrCl(CO)[P(C6H5)3]2 |
(verify) (what is: / ?) Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) |
|
Infobox references |
Wilkinson's catalyst is the common name for chlorotris(triphenylphosphine)rhodium(I), a coordination compound with the formula RhCl(PPh3)3 (Ph = phenyl). It is named after the late organometallic chemist and 1973 Nobel Laureate, Sir Geoffrey Wilkinson who popularized its use.
Contents |
The compound is a square planar, 16-electron complex. It is usually obtained in the form of a red-violet crystalline solid from the reaction of rhodium(III) chloride with excess triphenylphosphine.[1] The synthesis is conducted in refluxing ethanol which helps with the reduction.[2] Triphenylphosphine serves as the reducing agent yielding triphenylphosphine oxide.
Wilkinson's catalyst catalyzes the hydrogenation of alkenes.[3][4] The mechanism of this reaction involves the initial dissociation of one or two triphenylphosphine ligands to give 14- or 12-electron complexes, respectively, followed by oxidative addition of H2 to the metal. Subsequent π-complexation of alkene, intramolecular hydride transfer (olefin insertion), and reductive elimination results in extrusion of the alkane product, e.g.:
Other applications of Wilkinson’s catalyst includes the catalytic hydroboration of alkenes with catecholborane and pinacolborane,[5] and the selective 1,4-reduction of α, β-unsaturated carbonyl compounds in concert with triethylsilane.[6] When the triphenylphosphine ligands are replaced by chiral phosphines (e.g., chiraphos, DIPAMP, DIOP), the catalyst becomes chiral and converts prochiral alkenes into enantiomerically enriched alkanes via the process called asymmetric hydrogenation.[7]
RhCl(PPh3)3 reacts with CO to give trans-RhCl(CO)(PPh3)2, which is structurally analogous to Vaska's complex (but much less reactive). The same complex arises from the decarbonylation of aldehydes:
Upon stirring in benzene solution, RhCl(PPh3)3 converts to the poorly soluble red-colored species Rh2Cl2(PPh3)4. This conversion further demonstrates the lability of the triphenylphosphine ligands.